Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401144, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552250

RESUMO

On-demand switch on/off blood clogging is of paramount importance for the survival of mammals, for example as a quick response to seal damage wounds to minimize their bleeding rate. This mechanism is a complex chain process from initiated red blood cell aggregation at the target location (open wound) that quickly seals on a macroscopic scale the damaged flash. Inspired by nature an on-demand switchable particle clogging mechanism is developed with high spatial resolution down to micrometer size using light as an external non-invasive stimulation. Particle clogging can be adjusted on demand strong enough to even withstand pressure-driven fluid flow, additionally building up walls of aggregated particles, which stop the momentum of big particles under shear. The principle relies on a photosensitive surfactant, which induces under light illumination a long-ranged lateral attractive phoretic-osmotic activity of silica microparticles forcing them to aggregate. The strength of aggregation and therefore motion reduction or even stop of the particles against the fluid flow depends on the ratio between the aggregation strength and the velocity of the particles. The aggregation strength can be precisely controlled by the applied light intensity and adjusted particle concentration. Increasing both parameters results in a stronger aggregation tendency.

2.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095206

RESUMO

Light-driven diffusioosmosis is a membrane-free method for manipulating colloidal ensembles at solid-liquid interfaces based on photo-sensitive molecules inducing fluid flows along solid surfaces. In this study, we present our findings on porous colloids settled at a solid wall in an aqueous solution comprising a photo-sensitive azobenzene-containing cationic surfactant and a cyanine-based dye, capable of ionically binding to each other. The surfactant acts as an activation agent for diffusioosmotic flow. When exposed to modulated light, it undergoes photo-isomerization from a hydrophobic trans-state to a more hydrophilic cis-state, creating a concentration gradient near the irradiated area of the wall. The resulting osmotic pressure gradient sets the flow in motion. Porous colloids actively participate in flow generation by readily incorporating the surfactant molecules in the trans-state and releasing them in the cis-state, creating a constant source of diffusioosmotic flow. Under UV illumination, an excess of cis-isomers near the porous colloids elicits long-range repulsive interactions, tenfold the diameter of a particle. The dye acts as a sensor for the surfactant filling or emptying the pores of the colloids. It forms a complex with the trans-isomer and diffuses into the pores, where photoisomerization to cis-state destroys the complex and causes both the dye and the surfactant to leave the pores, altering the luminescence brightness within the colloids. We demonstrated that the presence of the dye affects cis-trans isomer ratios of the surfactant at photo-stationary states, thereby influencing the process of diffusioosmosis. This process enables the manipulation of colloidal particles and remote control of the interaction potential between them, facilitating the formation of well-ordered surface aggregates.

3.
Anal Chem ; 95(42): 15645-15655, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37831755

RESUMO

The quartz crystal microbalance with dissipation (QCM-D) has become an efficient and versatile measurement technique for investigating in situ the external stimuli responsiveness such as pH, temperature, or chemical gradients of surface-active substances at solid-liquid interfaces. However, light responsive adsorption investigation is more challenging presumably since the quartz crystal itself reacts to optical stimulation, showing frequency and dissipation shifts known as light induced detuning (LID). This yields an effective measurement artifact and makes data interpretation with respect to dynamic interactions of light responsive materials rather challenging. Here we introduce a simple guideline for correcting the artifacts of the QCM sensor response on irradiation to ensure quantitative analysis for light responsive materials via OCM-D. We also show that the LID depends on the adsorption properties of the sensor and the solvent properties (ionic concentration or viscosity), providing a guideline to minimize impact of the LID.

4.
Soft Matter ; 19(22): 4088-4098, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37233118

RESUMO

We report on triggering of p(NIPAM-AA) microgels' photo-responsiveness by making complexes with a spiropyran (SP) containing surfactant. Being dissolved in water, the SP surfactant in its merocyanine state bears three charges, while irradiation with UV and vis light leads to the partial or complete reversal of the SP state. The complexation of the photo-responsive amphiphile with swollen anionic microgels results in charge compensation within the gel interior and as a consequence its size reduces and the volume phase transition temperature (VPTT) decreases down to 32 °C. Under irradiation the MC form photo-isomerizes to a ring closed SP state generating a more hydrophobic surfactant with one positive charge at the head. The increase in the hydrophobicity of the surfactant and thus of the interior of the gel results in the reversible size change of the microgel. We investigate the photo-responsivity of the microgel as a function of wavelength and irradiation intensity, as well as of surfactant concentration and charge density of the microgel. We show that the change in the size and VPTT of the microgels during irradiation occurs through a combination of two processes: heating of the solution during light absorption by the surfactant (more pronounced in the case of UV irradiation) and the change in the hydrophobicity of the surfactant.

5.
Adv Mater ; 35(25): e2300358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971035

RESUMO

Separation of particles by size, morphology, or material identity is of paramount importance in fields such as filtration or bioanalytics. Up to now separation of particles distinguished solely by surface properties or bulk/surface morphology remains a very challenging process. Here a combination of pressure-driven microfluidic flow and local self-phoresis/osmosis are proposed via the light-induced chemical activity of a photoactive azobenzene-surfactant solution. This process induces a vertical displacement of the sedimented particles, which depends on their size and surface properties . Consequently, different colloidal components experience different regions of the ambient microfluidic shear flow. Accordingly, a simple, versatile method for the separation of such can be achieved by elution times in a sense of particle chromatography. The concepts are illustrated via experimental studies, complemented by theoretical analysis, which include the separation of bulk-porous from bulk-compact colloidal particles and the separation of particles distinguished solely by slight differences in their surface physico-chemical properties.

6.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232836

RESUMO

This joint experimental-theoretical work focuses on molecular and photophysical properties of the spiropyran-containing amphiphilic molecule in organic and aqueous solutions. Being dissolved in tested organic solvents, the system demonstrates positive photochromism, i.e., upon UV stimulus the colorless spiropyran form is transformed into colorful merocyanine isomer. However, the aqueous solution of the amphiphile possesses a negative photochromism: the orange-red merocyanine form becomes thermodynamically more stable in water, and both UV and vis stimuli lead to the partial or complete photobleaching of the solution. The explanation of this phenomenon is given on the basis of density functional theory calculations and classical modeling including thermodynamic integration. The simulations reveal that stabilization of merocyanine in water proceeds with the energy of ca. 70 kJ mol-1, and that the Helmholtz free energy of hydration of merocyanine form is 100 kJ mol-1 lower as compared to the behavior of SP isomer in water. The explanation of such a difference lies in the molecular properties of the merocyanine: after ring-opening reaction this molecule transforms into a zwitterionic form, as evidenced by the electrostatic potential plotted around the opened form. The presence of three charged groups on the periphery of a flat conjugated backbone stimulates the self-assembly of merocyanine molecules in water, ending up with the formation of elongated associates with stack-like building blocks, as shown in molecular dynamics simulations of the aqueous solution with the concentration above critical micelle concentration. Our quantitative evaluation of the hydrophilicity switching in spiropyran/merocyanine containing surfactants may prompt the search for new systems, including colloidal and polymeric ones, aiming at remote tuning of their morphology, which could give new promising shapes and patterns for the needs of modern nanotechnology.


Assuntos
Micelas , Água , Benzopiranos , Indóis , Nitrocompostos , Solventes , Tensoativos
7.
ACS Appl Mater Interfaces ; 14(36): 41412-41420, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36006795

RESUMO

Here, we establish different ways of light-triggered droplet manipulation such as reversible wetting, splitting, merging, and transport. The unique features of our approach are that the changes in the wetting properties of microscopic droplets of isotropic (oil) or anisotropic (liquid crystalline) liquids adsorbed on photoswitchable films can be triggered just by application of soft optical stimuli, which lead to dynamical, reversible changes in the local morphology of the structured surfaces. The adaptive films consist of an azobenzene-containing surfactant ionically attached to oppositely charged polymer chains. Under exposure to irradiation with light, the azobenzene photoisomerizes between two states, nonpolar trans-isomer and polar cis-isomer, resulting in the corresponding changes in the surface energy and orientation of the surfactant tails at the interface. Additionally, the local increase in the surface temperature due to absorption of light by the azobenzene groups enables diverse processes of manipulation of the adsorbed small droplets, such as the reversible increase of the droplet basal area up to 5 times, anisotropic wetting during irradiation with modulated light, and precise partition of the droplet into many small pieces, which can then be merged on demand to the desired number of larger droplets. Moreover, using a moving focused light spot, we experimentally demonstrate and theoretically explain the locomotion of the droplet over macroscopic distances with a velocity of up to 150 µm·s-1. Our findings could lead to the ultimate application of a programmable workbench for manipulating and operating an ensemble of droplets, just using simple and gentle optical stimuli.

8.
Langmuir ; 38(20): 6343-6351, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549484

RESUMO

Here we show that microgels trapped at a solid wall can issue liquid flow and transport over distances several times larger than the particle size. The microgel consists of cross-linked poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-AA) polymer chains loaded with cationic azobenzene-containing surfactant, which can assume either a trans- or a cis-state depending on the wavelength of the applied irradiation. The microgel, being a selective absorber of trans-isomers, responds by changing its volume under irradiation with light of appropriate wavelength at which the cis-isomers of the surfactant molecules diffuse out of the particle interior. Together with the change in particle size, the expelled cis-isomers form an excess of the concentration and subsequent gradient in osmotic pressure generating a halo of local light-driven diffusioosmotic (l-LDDO) flow. The direction and the strength of the l-LDDO depends on the intensity and irradiation wavelength, as well as on the amount of surfactant absorbed by the microgel. The flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure to blue light when the trans-/cis-ratio is 2/1, establishing a photostationary state. Irradiation with UV light, on the other hand, generates a radially transient flow pattern, which inverts from inward to outward over time at low intensities. By measuring the displacement of tracer particles around neutral microgels during a temperature-induced collapse, we can exclude that a change in particle shape itself causes the flow, i.e., just by expulsion or uptake of water. Ultimately, it is its ability to selectively absorb two isomers of photosensitive surfactant under different irradiation conditions that leads to an effective pumping caused by a self-induced diffusioosmotic flow.

9.
Eur Phys J E Soft Matter ; 44(4): 50, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33834353

RESUMO

We consider sedimented at a solid wall particles that are immersed in water containing small additives of photosensitive ionic surfactants. It is shown that illumination with an appropriate wavelength, a beam intensity profile, shape and size could lead to a variety of dynamic, both unsteady and steady state, configurations of particles. These dynamic, well-controlled and switchable particle patterns at the wall are due to an emerging diffusio-osmotic flow that takes its origin in the adjacent to the wall electrostatic diffuse layer, where the concentration gradients of surfactant are induced by light. The conventional nonporous particles are passive and can move only with already generated flow. However, porous colloids actively participate themselves in the flow generation mechanism at the wall, which also sets their interactions that can be very long ranged. This light-induced diffusio-osmosis opens novel avenues to manipulate colloidal particles and assemble them to various patterns. We show in particular how to create and split optically the confined regions of particles of tunable size and shape, where well-controlled flow-induced forces on the colloids could result in their crystalline packing, formation of dilute lattices of well-separated particles, and other states.

10.
Molecules ; 26(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375197

RESUMO

Ionic complexation of azobenzene-containing surfactants with any type of oppositely charged soft objects allows for making them photo-responsive in terms of their size, shape and surface energy. Investigation of the photo-isomerization kinetic and isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged objects is a necessary prerequisite for understanding the structural response of photo-sensitive complexes. Here, we report on photo-isomerization kinetics of a photo-sensitive surfactant in the presence of poly(acrylic acid, sodium salt). We show that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in aqueous solution. In a photo-stationary state, the ratio between the trans and cis isomers is shifted to a higher trans-isomer concentration for all irradiation wavelengths. This is explained by the formation of surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration and inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates.


Assuntos
Compostos Azo/química , Luz , Polieletrólitos/química , Tensoativos/química , Tensoativos/farmacologia , Algoritmos , Fenômenos Químicos , Isomerismo , Modelos Teóricos , Estrutura Molecular
11.
Langmuir ; 36(25): 6994-7004, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32073263

RESUMO

The repulsive surface forces, such as electrostatic or steric, acting between particles explain why they remain well separated in aqueous electrolyte solutions and are responsible for the stability of colloidal dispersions. However, the effective range of these interactions is always well below hundreds of nanometers and typically can be controlled by advanced manipulations such as tuning the electrolyte concentration or modifying the particle surface or, in some more specific cases, via subjecting the suspension to an external electric or magnetic field. Here we employ solutions with small additives of a photosensitive ionic surfactant to investigate if a repulsive interaction of microsized particles sedimented at the solid surface can be remotely controlled simply by illuminating it with an appropriate wavelength. We show that interactions of conventional impermeable particles remain practically unaffected by light, but, in contrast, for porous particles, we observe a long-range repulsion, several orders of magnitude longer than any conceivable equilibrium surface force. This repulsion emerges due to the diffusio-osmotic flow generated near the porous particles that in this scenario are playing a role of micropumps. The diffusio-osmotic repulsion of porous particles can be used for a remote control of their two-dimensional assemblies at the solid wall, and in particular, we demonstrate that by simply using two different illumination wavelengths it is possible to reversibly switch the state of porous particle dispersion from densely packed surface aggregates to a periodic lattice of particles separated by distances on the order of tens of micrometers.

12.
J Chem Phys ; 152(2): 024904, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941331

RESUMO

We report on photoisomerization kinetics of azobenzene containing surfactants in aqueous solution. The surfactant molecule consists of a positively charged trimethylammonium bromide head group, a hydrophobic spacer connecting via 6 to 10 CH2 groups to the azobenzene unit, and the hydrophobic tail of 1 and 3CH2 groups. Under exposure to light, the azobenzene photoisomerizes from more stable trans- to metastable cis-state, which can be switched back either thermally in dark or by illumination with light of a longer wavelength. The surfactant isomerization is described by a kinetic model of a pseudo first order reaction approaching equilibrium, where the intensity controls the rate of isomerization until the equilibrated state. The rate constants of the trans-cis and cis-trans photoisomerization are calculated as a function of several parameters such as wavelength and intensity of light, the surfactant concentration, and the length of the hydrophobic tail. The thermal relaxation rate from cis- to trans-state is studied as well. The surfactant isomerization shows a different kinetic below and above the critical micellar concentration of the trans isomer due to steric hindrance within the densely packed micelle but does not depend on the spacer length.

13.
J Chem Phys ; 152(19): 194703, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687228

RESUMO

In this paper, we introduce the phenomenon of light driven diffusioosmotic long-range attraction and repulsion of porous particles under irradiation with UV light. The change in the inter-particle interaction potential is governed by flow patterns generated around single colloids and results in reversible aggregation or separation of the mesoporous silica particles that are trapped at a solid surface. The range of the interaction potential extends to several times the diameter of the particle and can be adjusted by varying the light intensity. The "fuel" of the process is a photosensitive surfactant undergoing photo-isomerization from a more hydrophobic trans-state to a rather hydrophilic cis-state. The surfactant has different adsorption affinities to the particles depending on the isomerization state. The trans-isomer, for example, tends to accumulate in the negatively charged pores of the particles, while the cis-isomer prefers to remain in the solution. This implies that when under UV irradiation cis-isomers are being formed within the pores, they tend to diffuse out readily and generate an excess concentration near the colloid's outer surface, ultimately resulting in the initiation of diffusioosmotic flow. The direction of the flow depends strongly on the dynamic redistribution of the fraction of trans- and cis-isomers near the colloids due to different kinetics of photo-isomerization within the pores as compared to the bulk. The unique feature of the mechanism discussed in the paper is that the long-range mutual repulsion but also the attraction can be tuned by convenient external optical stimuli such as intensity so that a broad variety of experimental situations for manipulation of a particle ensemble can be realized.

14.
Soft Matter ; 16(5): 1148-1155, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31830185

RESUMO

We report on guided and self-organized motion of ensembles of mesoporous colloidal particles that can undergo dynamic aggregation or separation upon exposure to light. The forces on particles involve the phenomenon of light-driven diffusioosmosis (LDDO) and are hydrodynamic in nature. They can be made to act passively on the ensemble as a whole but also used to establish a mutual interaction between particles. The latter scenario requires a porous colloid morphology such that the particle can act as a source or sink of a photosensitive surfactant, which drives the LDDO process. The interplay between the two modes of operation leads to fascinating possibilities of dynamical organization and manipulation of colloidal ensembles adsorbed at solid-liquid interfaces. While the passive mode can be thought of to allow for a coarse structuring of a cloud of colloids, the inter-particle mode may be used to impose a fine structure on a 2D particle grid. Local flow is used to impose and tailor interparticle interactions allowing for much larger interaction distances that can be achieved with, e.g., DLVO type of forces, and is much more versatile.

15.
J Phys Condens Matter ; 31(12): 125201, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30625434

RESUMO

Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm3+ or Er3+ as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < λ em < 480 nm (for Tm3+, three and four photon induced emission) or 525 nm < λ em < 545 nm (for Er3+, two photon induced emission), respectively. Especially for UCNPs containing Tm3+ a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (λ ex = 976 nm) in the presence of the Tm3+-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR.

16.
ACS Appl Mater Interfaces ; 10(36): 30844-30851, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114362

RESUMO

We report on the formation of stimuli-responsive structured hydrogel thin films whose pattern geometry can be adjusted on demand and tuned reversibly by varying solvent quality or by changing temperature. The hydrogel films, ∼100 nm in thickness, were prepared by depositing layers of random copolymers comprising N-isopropylacrylamide and ultraviolet (UV)-active methacryloyloxybenzophenone units onto solid substrates. A two-beam interference pattern technique was used to cross-link the selected areas of the film; any unreacted material was extracted using ethanol after UV light-assisted cross-linking. In this way, we produced nanoholes, perfectly ordered structures with a narrow size distribution, negligible tortuosity, adjustable periodicity, and a high density. The diameter of the circular holes ranged from a few micrometers down to several tens of nanometers; the hole periodicity could be adjusted readily by changing the optical period of the UV interference pattern. The holes were reversibly closed and opened by swelling/deswelling the polymer networks in the presence of ethanol and water, respectively, at various temperatures. The reversible regulation of the hole diameter can be repeated many times within a few seconds. The hydrogel sheet with circular holes periodically arranged may also be transferred onto different substrates and be employed as tunable templates for the deposition of desired substances.

17.
J Phys Chem B ; 122(6): 2001-2009, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29337554

RESUMO

We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 µm in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [ J. Phys. Chem. Lett. 2017 , 8 , 1094 ], we calculated the opto-mechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results.

18.
Sci Rep ; 7(1): 8506, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819103

RESUMO

Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

19.
J Chem Phys ; 147(3): 031101, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28734286

RESUMO

Here we report on a light triggered remote control of microgel size in the presence of photosensitive surfactant. The hydrophobic tail of the cationic surfactant contains azobenzene group that undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. We have investigated light assisted behaviour and the complex formation of the microgels with azobenzene containing surfactant over the broad concentrational range starting far below and exceeding several times of the critical micelle concentration (CMC). At small surfactant concentration in solution (far below CMC), the surfactant in the trans-state accommodates within the microgel causing its compaction, while the cis-isomer desorbs out of microgel resulting in its swelling. The process of the microgel size change can be described as swelling on UV irradiation (trans-cis isomerization) and shrinking on irradiation with blue light (cis-trans isomerization). However, at the surfactant concentrations larger than CMC, the opposite behaviour is observed: the microgel swells on blue irradiation and shrinks during exposure to UV light. We explain this behaviour theoretically taking into account isomer dependent micellization of surfactant within the microgels.

20.
J Chem Phys ; 146(10): 104703, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298105

RESUMO

We report on photoinduced remote control of work function and surface potential of a silicon surface modified with a photosensitive self-assembled monolayer consisting of chemisorbed azobenzene molecules (4-nitroazobenzene). It was found that the attachment of the organic monolayer increases the work function by hundreds of meV due to the increase in the electron affinity of silicon substrates. The change in the work function on UV light illumination is more pronounced for the azobenzene jacketed silicon substrate (ca. 250 meV) in comparison to 50 meV for the unmodified surface. Moreover, the photoisomerization of azobenzene results in complex kinetics of the work function change: immediate decrease due to light-driven processes in the silicon surface followed by slower recovery to the initial state due to azobenzene isomerization. This behavior could be of interest for electronic devices where the reaction on irradiation should be more pronounced at small time scales but the overall surface potential should stay constant over time independent of the irradiation conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...